次の記事を削除します。 投稿時に入力した暗証キーを入力して下さい。


趣味で相対論
11   不識庵 - 2014/09/20(土) 22:13:49

>>10 宇宙な人 さん

>>8でのBが円Cの円周上を移動する場合ですが、
ベクトルAは当然真北を向いています。
ベクトルBも常に真北を向いています。

これが違っていると思います。

この場合の平行移動の意味は、>10の1.と2.のいずれとも異なり、次のような意味になると思います。

(1) 球面の外側にこれを含むような直交3次元座標系を設定する。(ここは>10の2.と同じです。)
(2) 円Cに沿ってベクトルBを、円C上の一点C1 から微小量だけ離れたC2まで、(1)の直交3次元座標系に対して平行に平行移動させる。
  (ここも>10の2.と同じです。)
(3) 上記平行移動させたベクトルをC2における接平面上に投影する。
  (ここが>10の2.と異なっています。)
(4) 上記の(2)、(3)の手続きを所定の移動量になるまで繰り返す。

円C上のある点で真北を向いていたベクトルBも、円C上を平行移動している間に、真北でない方向を向くようになると思います。
円C上で接平面は殆ど変りませんから、最終的にはベクトルBは殆ど真南を向くのではないでしょうか?